Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.119
Filtrar
1.
Physiol Rep ; 12(7): e16005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605426

RESUMO

In this review, we discuss some of the recent advances in our understanding of the physiology of the air pollution and exercise. The key areas covered include the effect of exercise intensity, the effects of pre-exposure to air pollution, acclimation to air pollution, and the utility of masks during exercise. Although higher intensity exercise leads to an increase in the inhaled dose of pollutants for a given distance traveled, the acute effects of (diesel exhaust) air pollution do not appear to be more pronounced. Second, exposure to air pollution outside of exercise bouts seems to have an effect on exercise response, although little research has examined this relationship. Third, humans appear to have an ability to acclimate to ground level ozone, but not other pollutants. And finally, masks may have beneficial effects on certain outcomes at low intensity exercise in pollution with significant levels of particles, but more study is required in realistic conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Emissões de Veículos , Exercício Físico
2.
Front Public Health ; 12: 1333811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605869

RESUMO

Background: In recent years, an increasing number of observational studies have reported the impact of air pollution on autoimmune diseases (ADs). However, no Mendelian randomization (MR) studies have been conducted to investigate the causal relationships. To enhance our understanding of causality, we examined the causal relationships between particulate matter (PM) and nitrogen oxides (NOx) and ADs. Methods: We utilized genome-wide association study (GWAS) data on PM and NOx from the UK Biobank in European and East Asian populations. We also extracted integrated GWAS data from the Finnish consortium and the Japanese Biobank for two-sample MR analysis. We employed inverse variance weighted (IVW) analysis to assess the causal relationship between PM and NOx exposure and ADs. Additionally, we conducted supplementary analyses using four methods, including IVW (fixed effects), weighted median, weighted mode, and simple mode, to further investigate this relationship. Results: In the European population, the results of MR analysis suggested a statistically significant association between PM2.5 and psoriasis only (OR = 3.86; 95% CI: 1.89-7.88; PIVW < 0.00625), while a potential association exists between PM2.5-10 and vitiligo (OR = 7.42; 95% CI: 1.02-53.94; PIVW < 0.05), as well as between PM2.5 and systemic lupus erythematosus (OR = 68.17; 95% CI: 2.17-2.1e+03; PIVW < 0.05). In East Asian populations, no causal relationship was found between air pollutants and the risk of systemic lupus erythematosus and rheumatoid arthritis (PIVW > 0.025). There was no pleiotropy in the results. Conclusion: Our results suggest a causal association between PM2.5 and psoriasis in European populations. With the help of air pollution prevention and control, the harmful progression of psoriasis may be slowed.


Assuntos
Poluição do Ar , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Autoimunes/etiologia , Doenças Autoimunes/genética , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Psoríase/etiologia , Psoríase/genética
3.
Environ Health ; 23(1): 36, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609898

RESUMO

BACKGROUND: Multifaceted SARS-CoV-2 interventions have modified exposure to air pollution and dynamics of respiratory diseases. Identifying the most vulnerable individuals requires effort to build a complete picture of the dynamic health effects of air pollution exposure, accounting for disparities across population subgroups. METHODS: We use generalized additive model to assess the likely changes in the hospitalisation and mortality rate as a result of exposure to PM2.5 and O3 over the course of COVID-19 pandemic. We further disaggregate the population into detailed age categories and illustrate a shifting age profile of high-risk population groups. Additionally, we apply multivariable logistic regression to integrate demographic, socioeconomic and climatic characteristics with the pollution-related excess risk. RESULTS: Overall, a total of 1,051,893 hospital admissions and 34,954 mortality for respiratory disease are recorded. The findings demonstrate a transition in the association between air pollutants and hospitalisation rates over time. For every 10 µg/m3 increase of PM2.5, the rate of hospital admission increased by 0.2% (95% CI: 0.1-0.7%) and 1.4% (1.0-1.7%) in the pre-pandemic and dynamic zero-COVID stage, respectively. Conversely, O3-related hospitalization rate would be increased by 0.7% (0.5-0.9%) in the pre-pandemic stage but lowered to 1.7% (1.5-1.9%) in the dynamic zero-COVID stage. Further assessment indicates a shift of high-risk people from children and young adolescents to the old, primarily the elevated hospitalization rates among the old people in Lianyungang (RR: 1.53, 95%CI: 1.46, 1.60) and Nantong (RR: 1.65, 95%CI: 1.57, 1.72) relative to those for children and young adolescents. Over the course of our study period, people with underlying diseases would have 26.5% (22.8-30.3%) and 12.7% (10.8-14.6%) higher odds of having longer hospitalisation and over 6 times higher odds of deaths after hospitalisation. CONCLUSIONS: Our estimates provide the first comprehensive evidence on the dynamic pollution-health associations throughout the pandemic. The results suggest that age and underlying diseases collectively determines the disparities of pollution-related health effect across population subgroups, underscoring the urgency to identifying the most vulnerable individuals to air pollution.


Assuntos
Poluição do Ar , Transtornos Respiratórios , Doenças Respiratórias , Adolescente , Criança , Humanos , Pandemias , Doenças Respiratórias/epidemiologia , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos
4.
Circulation ; 149(16): 1298-1314, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38620080

RESUMO

Urban environments contribute substantially to the rising burden of cardiometabolic diseases worldwide. Cities are complex adaptive systems that continually exchange resources, shaping exposures relevant to human health such as air pollution, noise, and chemical exposures. In addition, urban infrastructure and provisioning systems influence multiple domains of health risk, including behaviors, psychological stress, pollution, and nutrition through various pathways (eg, physical inactivity, air pollution, noise, heat stress, food systems, the availability of green space, and contaminant exposures). Beyond cardiometabolic health, city design may also affect climate change through energy and material consumption that share many of the same drivers with cardiometabolic diseases. Integrated spatial planning focusing on developing sustainable compact cities could simultaneously create heart-healthy and environmentally healthy city designs. This article reviews current evidence on the associations between the urban exposome (totality of exposures a person experiences, including environmental, occupational, lifestyle, social, and psychological factors) and cardiometabolic diseases within a systems science framework, and examines urban planning principles (eg, connectivity, density, diversity of land use, destination accessibility, and distance to transit). We highlight critical knowledge gaps regarding built-environment feature thresholds for optimizing cardiometabolic health outcomes. Last, we discuss emerging models and metrics to align urban development with the dual goals of mitigating cardiometabolic diseases while reducing climate change through cross-sector collaboration, governance, and community engagement. This review demonstrates that cities represent crucial settings for implementing policies and interventions to simultaneously tackle the global epidemics of cardiovascular disease and climate change.


Assuntos
Poluição do Ar , Saúde da População Urbana , Humanos , Cidades/epidemiologia , Poluição do Ar/efeitos adversos
5.
Science ; 384(6691): 33-34, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574150

RESUMO

A broader approach to assessing the burden of disease from air pollution is required.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Psicossociais da Doença , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Humanos
8.
Yale J Biol Med ; 97(1): 29-40, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559464

RESUMO

Maternal prenatal exposure to household air pollution (HAP) is a critical public health concern with potential long-term implications for child respiratory health. The objective of this study is to assess the level of association between prenatal household air pollution and child respiratory health, and to identify which HAP pollutants are associated with specific respiratory illnesses or symptoms and to what degree. Relevant studies were retrieved from PubMed databases up to April 27, 2010, and their reference lists were reviewed. Random effects models were applied to estimate summarized relative risks (RRs) and 95% confidence intervals (CIs). The analysis involved 11 studies comprising 387 767 mother-child pairs in total, assessing various respiratory health outcomes in children exposed to maternal prenatal HAP. Children with prenatal exposure to HAP pollutants exhibited a summary RR of 1.26 (95% CI=1.08-1.33) with moderate between-study heterogeneity (I²=49.22%) for developing respiratory illnesses. Specific associations were found between prenatal exposure to carbon monoxide (CO) (RR=1.11, 95% CI: 1.09-1.13), Nitrogen Oxides (NOx) (RR=1.46, 95% CI: 1.09-1.60), and particulate matter (PM) (RR=1.26, 95% CI: 1.2186-1.3152) and child respiratory illnesses (all had I² close to 0%, indicating no heterogeneity). Positive associations with child respiratory illnesses were also found with ultrafine particles (UFP), polycyclic aromatic hydrocarbons (PAH), and ozone (O3). However, no significant association was observed for prenatal exposure to sulfur dioxide (SO2). In summary, maternal prenatal exposure to HAP may contribute to a higher risk of child respiratory health issues, emphasizing the need for interventions to reduce this exposure during pregnancy. Targeted public health strategies such as improved ventilation, cleaner cooking technologies, and awareness campaigns should be implemented to minimize adverse respiratory effects on children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise
9.
JAMA Netw Open ; 7(4): e245292, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587845

RESUMO

Importance: Reducing exposure to fine particulate matter (<2.5 µm [PM2.5]) air pollution improves cardiopulmonary morbidity and mortality. However, the public health relevance of air quality index (AQI) activity guidelines under present-day environmental conditions in the US has not been critically assessed. Objective: To evaluate the public health relevance of following PM2.5 AQI activity guidance in preventing serious atherosclerotic cardiovascular disease (ASCVD) and pulmonary events among adults in the US. Design, Setting, and Participants: This cross-sectional modeling study involved the general adult population and sensitive individuals as designated by the US Environmental Protection Agency (EPA), including adults with preexisting ASCVD or lung disease (asthma or chronic obstructive pulmonary disease). The study was conducted between August 1, 2023, and January 31, 2024. Exposures: Daily AQI strata for PM2.5 and the corresponding activity recommendations. Main Outcomes and Measures: The main outcome was the number needed to treat (NNT) per day by following activity guidance across daily AQI strata to prevent 1 serious ASCVD or pulmonary event among relevant populations. To calculate PM2.5-induced excess disease event rates per day, estimated baseline disease-specific daily event rates for each group were multiplied by the increase in risks due to PM2.5 levels at each AQI stratum. The number of events prevented per day was calculated by multiplying each excess disease event rate by the percentage in exposure reduction plausibly incurred by following population-specific activity guidance at each AQI level. The NNT is the reciprocal of the number of events prevented. Results: The NNT to prevent ASCVD events was high for the general population and for patients with ASCVD across all AQI strata. The range of values was comparatively lower to prevent pulmonary events among adults with lung disease. During most days (96%) when activity recommendations were promulgated due to elevated PM2.5 (AQI, 101-200), the NNT to prevent a serious disease event remained very high for the general population (>18 million), patients with ASCVD (approximately 1.6-5 million), and adults with lung disease (approximately 66 000-202 000). Conclusions and Relevance: These findings suggest that existing PM2.5 AQI activity recommendations are of questionable public health relevance in present-day conditions and merit consideration for updating to improve their potential effectiveness.


Assuntos
Poluição do Ar , Aterosclerose , Doença Pulmonar Obstrutiva Crônica , Estados Unidos/epidemiologia , Adulto , Humanos , Estudos Transversais , Saúde Pública , United States Environmental Protection Agency , Poluição do Ar/efeitos adversos , Material Particulado
10.
Indian Pediatr ; 61(4): 375-379, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597103

RESUMO

Recent research has underscored the diverse ways in which air pollution detrimentally affects child health in India. Notably, India shoulders one of the highest burdens of mortality of children under five years of age globally due to exposure to air pollution. Distinct mitigation strategies are vital to reduce air pollution exposure and its resultant health burdens among children in India when compared to strategies applicable in the global West. This necessity arises due to the substantial influence of residential combustion of solid fuels, and considerable disparities prevalent among India's population. Addressing these unique challenges requires widespread awareness, community engagement, and sustainable policies. As India embarked on a mission to reduce air pollution, showcasing health benefits linked to interventions is crucial. Augmenting access to health data is equally essential to bolster evidence-based policymaking aimed at reducing the child health burden stemming from air pollution in India.


Assuntos
Poluição do Ar , Saúde da Criança , Criança , Humanos , Pré-Escolar , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Índia/epidemiologia
11.
Ecotoxicol Environ Saf ; 275: 116274, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564865

RESUMO

BACKGROUND: Evidence of modifying effect of various dietary patterns (DPs) on risk of type 2 diabetes (T2D) induced by long-term exposure to air pollution (AP) is still rather lacking, which therefore we aimed to explore in this study. METHODS: We included 78,230 UK Biobank participants aged 40-70 years with at least 2 typical 24-hour dietary assessments and without baseline diabetes. The annual average concentration of particulate matter with diameter micrometers ≤2.5 (PM2.5) and ≤10 (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOX) estimated by land use regression model was the alternative proxy of long-term AP exposure. Three well-known prior DPs such as Mediterranean diet (MED), dietary approaches to stop hypertension diet (DASH), and empirical dietary inflammatory pattern (EDIP), as well as three posterior DPs derived by the rank reduced regression model were used to capture participants' dietary habits. Cox regression models were used to estimate AP-T2D and DP-T2D associations. Modifying effect of DPs on AP-T2D association was assessed using stratified analysis and heterogeneity test. RESULTS: During a median follow-up 12.19 years, 1,693 participants developed T2D. PM2.5, PM10, NO2, and NOX significantly increased the T2D risk (P <0.05), with hazard ratio (HR) and 95% confidence interval (95% CI) for per interquartile range increase being 1.09 (1.02,1.15), 1.04 (1.00, 1.09), 1.11 (1.04, 1.18), and 1.08 (1.03, 1.14), respectively. Comparing high with low adherence, healthy DPs were associated with a 14-41% lower T2D risk. Participants with high adherence to MED, DASH, and anti-EDIP, alongside the posterior anti-oxidative dietary pattern (AODP) had attenuated and statistically non-significant NO2-T2D and NOX-T2D associations (Pmodify <0.05). CONCLUSIONS: Multiple forms of healthy DPs help reduce the T2D risk associated with long-term exposure to NO2 and NOX. Our findings indicate that adherence to healthy DPs is a feasible T2D prevention strategy for people long-term suffering from NO2 and NOX pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Humanos , Estudos de Coortes , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , 60682 , Diabetes Mellitus Tipo 2/epidemiologia , 60408 , Bancos de Espécimes Biológicos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise
12.
Ecotoxicol Environ Saf ; 275: 116273, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564861

RESUMO

BACKGROUND: Sarcopenia is characterized by decreased muscle mass and strength, posing threat to quality of life. Air pollutants are increasingly recognized as risk factors for diseases, while the relationship between the two remains to be elucidated. This study investigated whether exposure to ambient air pollution contributes to the development of sarcopenia. METHODS: We employed the data from the UK Biobank with 303,031 eligible participants. Concentrations of PM2·5, NO2, and NOx were estimated. Cox proportional hazard regression models were applied to investigate the associations between pollutants and sarcopenia. RESULTS: 30,766 probable sarcopenia cases was identified during the follow-up. We observed that exposure to PM2.5 (HR, 1.232; 95% CI, 1.053-1.440), NO2 (HR, 1.055; 95% CI, 1.032-1.078) and NOx (HR, 1.016; 95% CI, 1.007-1.026) were all significantly associated with increased risk for probable sarcopenia for each 10 µg/m3 increase in pollutant concentration. In comparison with individuals in the lowest quartiles of exposure, those in the upper quartiles had significantly increased risk of probable sarcopenia. Sarcopenia-related factors, e.g., reduced lean muscle mass, diminished walking pace, and elevated muscle fat infiltration ratio, also exhibited positive associations with exposure to ambient air pollution. On the contrary, high level physical activity significantly mitigated the influence of air pollutants on the development of probable sarcopenia. CONCLUSIONS: Air pollution exposure elevated the risk of developing sarcopenia and related manifestations in a dose-dependent manner, while physical activity maintained protective under this circumstance. Efforts should be made to control air pollution and emphasize the importance of physical activity for skeletal muscle health under this circumstance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Sarcopenia , Humanos , Estudos Prospectivos , Dióxido de Nitrogênio , Sarcopenia/etiologia , Sarcopenia/induzido quimicamente , Qualidade de Vida , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
13.
J Korean Med Sci ; 39(13): e131, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599601

RESUMO

BACKGROUND: Prenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes. METHODS: This prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses. RESULTS: Exposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 µg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 µg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively. CONCLUSION: Exposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Gestacional , Complicações na Gravidez , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Resultado da Gravidez , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos Prospectivos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , República da Coreia/epidemiologia , China
15.
Environ Sci Technol ; 58(15): 6509-6518, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38561599

RESUMO

We aimed to evaluate the association between air pollutants and mortality risk in patients with acute aortic dissection (AAD) in a longitudinal cohort and to explore the potential mechanisms of adverse prognosis induced by fine particulate matter (PM2.5). Air pollutants data, including PM2.5, PM10.0, nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3), were collected from official monitoring stations, and multivariable Cox regression models were applied. Single-cell sequencing and proteomics of aortic tissue were conducted to explore the potential mechanisms. In total, 1,267 patients with AAD were included. Exposure to higher concentrations of air pollutants was independently associated with an increased mortality risk. The high-PM2.5 group carried approximately 2 times increased mortality risk. There were linear associations of PM10, NO2, CO, and SO2 exposures with long-term mortality risk. Single-cell sequencing revealed an increase in mast cells in aortic tissue in the high-PM2.5 exposure group. Enrichment analysis of the differentially expressed genes identified the inflammatory response as one of the main pathways, with IL-17 and TNF signaling pathways being among the top pathways. Analysis of proteomics also identified these pathways. This study suggests that exposure to higher PM2.5, PM10, NO2, CO, and SO2 are associated with increased mortality risk in patients with AAD. PM2.5-related activation and degranulation of mast cells may be involved in this process.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Dissecção Aórtica , Ozônio , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Dióxido de Nitrogênio/análise , Proteômica , Material Particulado/análise , Ozônio/análise , Dióxido de Enxofre , Exposição Ambiental/análise , China
16.
Biometrics ; 80(2)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38640436

RESUMO

Several epidemiological studies have provided evidence that long-term exposure to fine particulate matter (pm2.5) increases mortality rate. Furthermore, some population characteristics (e.g., age, race, and socioeconomic status) might play a crucial role in understanding vulnerability to air pollution. To inform policy, it is necessary to identify groups of the population that are more or less vulnerable to air pollution. In causal inference literature, the group average treatment effect (GATE) is a distinctive facet of the conditional average treatment effect. This widely employed metric serves to characterize the heterogeneity of a treatment effect based on some population characteristics. In this paper, we introduce a novel Confounder-Dependent Bayesian Mixture Model (CDBMM) to characterize causal effect heterogeneity. More specifically, our method leverages the flexibility of the dependent Dirichlet process to model the distribution of the potential outcomes conditionally to the covariates and the treatment levels, thus enabling us to: (i) identify heterogeneous and mutually exclusive population groups defined by similar GATEs in a data-driven way, and (ii) estimate and characterize the causal effects within each of the identified groups. Through simulations, we demonstrate the effectiveness of our method in uncovering key insights about treatment effects heterogeneity. We apply our method to claims data from Medicare enrollees in Texas. We found six mutually exclusive groups where the causal effects of pm2.5 on mortality rate are heterogeneous.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos/epidemiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Teorema de Bayes , Medicare , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos
17.
Environ Health ; 23(1): 40, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622704

RESUMO

BACKGROUND: Western Montana, USA, experiences complex air pollution patterns with predominant exposure sources from summer wildfire smoke and winter wood smoke. In addition, climate change related temperatures events are becoming more extreme and expected to contribute to increases in hospital admissions for a range of health outcomes. Evaluating while accounting for these exposures (air pollution and temperature) that often occur simultaneously and may act synergistically on health is becoming more important. METHODS: We explored short-term exposure to air pollution on children's respiratory health outcomes and how extreme temperature or seasonal period modify the risk of air pollution-associated healthcare events. The main outcome measure included individual-based address located respiratory-related healthcare visits for three categories: asthma, lower respiratory tract infections (LRTI), and upper respiratory tract infections (URTI) across western Montana for ages 0-17 from 2017-2020. We used a time-stratified, case-crossover analysis with distributed lag models to identify sensitive exposure windows of fine particulate matter (PM2.5) lagged from 0 (same-day) to 14 prior-days modified by temperature or season. RESULTS: For asthma, increases of 1 µg/m3 in PM2.5 exposure 7-13 days prior a healthcare visit date was associated with increased odds that were magnified during median to colder temperatures and winter periods. For LRTIs, 1 µg/m3 increases during 12 days of cumulative PM2.5 with peak exposure periods between 6-12 days before healthcare visit date was associated with elevated LRTI events, also heightened in median to colder temperatures but no seasonal effect was observed. For URTIs, 1 unit increases during 13 days of cumulative PM2.5 with peak exposure periods between 4-10 days prior event date was associated with greater risk for URTIs visits that were intensified during median to hotter temperatures and spring to summer periods. CONCLUSIONS: Delayed, short-term exposure increases of PM2.5 were associated with elevated odds of all three pediatric respiratory healthcare visit categories in a sparsely population area of the inter-Rocky Mountains, USA. PM2.5 in colder temperatures tended to increase instances of asthma and LRTIs, while PM2.5 during hotter periods increased URTIs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Infecções Respiratórias , Criança , Humanos , Estados Unidos/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Temperatura , Estações do Ano , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Fumaça/efeitos adversos , Asma/epidemiologia , Montana/epidemiologia , Exposição Ambiental/análise
18.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38632038

RESUMO

BACKGROUND: Patients with type 2 diabetes (T2D) may disproportionately suffer the adverse cardiovascular effects of air pollution, but relevant evidence on microvascular outcome is lacking. We aimed to examine the association between air pollution exposure and the risk of microvascular complications among patients with T2D. METHODS: This prospective study included 17 995 participants with T2D who were free of macro- and micro-vascular complications at baseline from the UK Biobank. Annual average concentrations of particulate matter (PM) with diameters <2.5 µm (PM2.5), <10 µm (PM10), nitrogen dioxide (NO2) and nitrogen oxides (NOx) were assessed using land use regression models. Cox proportional hazards regression was used to estimate the associations of air pollution exposure with incident diabetic microvascular complications. The joint effects of the air pollutant mixture were examined using quantile-based g-computation in a survival setting. RESULTS: In single-pollutant models, the adjusted hazard ratios (95% confidence intervals) for composite diabetic microvascular complications per interquartile range increase in PM2.5, PM10, NO2 and NOx were 1.09 (1.04-1.14), 1.06 (1.01-1.11), 1.07 (1.02-1.12) and 1.04 (1.00-1.08), respectively. Similar significant results were found for diabetic nephropathy and diabetic neuropathy, but not for diabetic retinopathy. The associations of certain air pollutants with composite microvascular complications and diabetic nephropathy were present even at concentrations below the World Health Organization limit values. Multi-pollutant analyses demonstrated that PM2.5 contributed most to the elevated risk associated with the air pollutant mixture. In addition, we found no interactions between air pollution and metabolic risk factor control on the risk of diabetic microvascular complications. CONCLUSIONS: Long-term individual and joint exposure to PM2.5, PM10, NO2 and NOx, even at low levels, was associated with an increased risk of diabetic microvascular complications, with PM2.5 potentially being the main contributor.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Nefropatias Diabéticas , Poluentes Ambientais , Humanos , Estudos Prospectivos , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Nefropatias Diabéticas/induzido quimicamente , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluentes Ambientais/análise , Angiopatias Diabéticas/induzido quimicamente
19.
Front Public Health ; 12: 1333077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584928

RESUMO

Background: Most existing studies have only investigated the direct effects of the built environment on respiratory diseases. However, there is mounting evidence that the built environment of cities has an indirect influence on public health via influencing air pollution. Exploring the "urban built environment-air pollution-respiratory diseases" cascade mechanism is important for creating a healthy respiratory environment, which is the aim of this study. Methods: The study gathered clinical data from 2015 to 2017 on patients with respiratory diseases from Tongji Hospital in Wuhan. Additionally, daily air pollution levels (sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM2.5, PM10), and ozone (O3)), meteorological data (average temperature and relative humidity), and data on urban built environment were gathered. We used Spearman correlation to investigate the connection between air pollution and meteorological variables; distributed lag non-linear model (DLNM) was used to investigate the short-term relationships between respiratory diseases, air pollutants, and meteorological factors; the impacts of spatial heterogeneity in the built environment on air pollution were examined using the multiscale geographically weighted regression model (MGWR). Results: During the study period, the mean level of respiratory diseases (average age 54) was 15.97 persons per day, of which 9.519 for males (average age 57) and 6.451 for females (average age 48); the 24 h mean levels of PM10, PM2.5, NO2, SO2 and O3 were 78.056 µg/m3, 71.962 µg/m3, 54.468 µg/m3, 12.898 µg/m3, and 46.904 µg/m3, respectively; highest association was investigated between PM10 and SO2 (r = 0.762, p < 0.01), followed by NO2 and PM2.5 (r = 0.73, p < 0.01), and PM10 and PM2.5 (r = 0.704, p < 0.01). We observed a significant lag effect of NO2 on respiratory diseases, for lag 0 day and lag 1 day, a 10 µg/m3 increase in NO2 concentration corresponded to 1.009% (95% CI: 1.001, 1.017%) and 1.005% (95% CI: 1.001, 1.011%) increase of respiratory diseases. The spatial distribution of NO2 was significantly influenced by high-density urban development (population density, building density, number of shopping service facilities, and construction land, the bandwidth of these four factors are 43), while green space and parks can effectively reduce air pollution (R2 = 0.649). Conclusion: Previous studies have focused on the effects of air pollution on respiratory diseases and the effects of built environment on air pollution, while this study combines these three aspects and explores the relationship between them. Furthermore, the theory of the "built environment-air pollution-respiratory diseases" cascading mechanism is practically investigated and broken down into specific experimental steps, which has not been found in previous studies. Additionally, we observed a lag effect of NO2 on respiratory diseases and spatial heterogeneity of built environment in the distribution of NO2.


Assuntos
Poluição do Ar , Doenças Respiratórias , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Cidades , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia , Material Particulado/análise
20.
J Prev Med Public Health ; 57(2): 185-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576202

RESUMO

OBJECTIVES: Excess mortality associated with long-term exposure to fine particulate matter (PM2.5) has been documented. However, research on the disease burden following short-term exposure is scarce. We investigated the cause-specific mortality burden of short-term exposure to PM2.5 by considering the potential non-linear concentration-response relationship in Korea. METHODS: Daily cause-specific mortality rates and PM2.5 exposure levels from 2010 to 2019 were collected for 8 Korean cities and 9 provinces. A generalized additive mixed model was employed to estimate the non-linear relationship between PM2.5 exposure and cause-specific mortality levels. We assumed no detrimental health effects of PM2.5 concentrations below 15 µg/m3. Overall deaths attributable to short-term PM2.5 exposure were estimated by summing the daily numbers of excess deaths associated with ambient PM2.5 exposure. RESULTS: Of the 2 749 704 recorded deaths, 2 453 686 (89.2%) were non-accidental, 591 267 (21.5%) were cardiovascular, and 141 066 (5.1%) were respiratory in nature. A non-linear relationship was observed between all-cause mortality and exposure to PM2.5 at lag0, whereas linear associations were evident for cause-specific mortalities. Overall, 10 814 all-cause, 7855 non-accidental, 1642 cardiovascular, and 708 respiratory deaths were attributed to short-term exposure to PM2.5. The estimated number of all-cause excess deaths due to short-term PM2.5 exposure in 2019 was 1039 (95% confidence interval, 604 to 1472). CONCLUSIONS: Our findings indicate an association between short-term PM2.5 exposure and various mortality rates (all-cause, non-accidental, cardiovascular, and respiratory) in Korea over the period from 2010 to 2019. Consequently, action plans should be developed to reduce deaths attributable to short-term exposure to PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , República da Coreia/epidemiologia , Mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...